当前位置:首页 > 教学资料 > 教学反思

《解简易方程》教学反思

时间:2024-06-08 23:52:15
《解简易方程》教学反思

《解简易方程》教学反思

作为一位刚到岗的教师,我们要在教学中快速成长,教学反思能很好的记录下我们的课堂经验,如何把教学反思做到重点突出呢?以下是小编帮大家整理的《解简易方程》教学反思,希望能够帮助到大家。

《解简易方程》教学反思1

解方程是数学领域里一块儿重要内容,在实际生活中,学会了列方程解决问题之后,很多不易用算术方法解答的习题,却能列方程很容易地解答出来,这足以说明列方程解决问题比算术法解决问题有非常明显的优越性。

今年我教的是四年级,所用教材是青岛版五四制教材,第一单元就出现了解方程的内容,这部分教材我已经教学了四遍了,按理说这第五次教学这部分内容应该是易如反掌、挥洒自如,可是面对新教材的设计,我这个五年不教学高年级的老师却有了很大困惑----本教材的教学设计打破了传统的教学方法,而出乎我预料的则是借用天平演示使学生感悟“等式”,知道“等式两边都加上或减去都乘或除以同一个非零的数,等式仍然成立”这个规律,从而使学生进一步从真正意义上理解方程的意义,并学会运用等式的性质解方程。在以前几轮教材中,学习解方程之前都是先要求学生熟练掌握加、减、乘、除法各部分之间的关系,然后利用:一个加数=和-另一个加数;被减数=减数+差;减数=被减数-差;被除数=商×除数;除数=被除数÷商等关系式来求出方程的解,就连我自己小时候学习的解方程也都是根据加减、乘除法各部分之间的关系求方程的解的。

开始我有些怀疑,以为只有青岛版五四制这个版本的教材利用了等式的性质教学的,于是急切的打开电脑找到各种版本的电子教材翻看这部分内容,却发现各种版本的教材设计思路是一样的,都是先学习等式的基本性质,接着再运用等式的基本性质解方程。为了彻底弄明白教材的编写意图,我又找到了这几个版本的教材所配套的教师教学用书翻看,新教材编写者大致都是这样解释的:长期以来,小学教学简易方程时,方程变形的依据总是加减、乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。看了这些内容,我才从思想上认可了这种设计思路,原来是为了使小学教学解方程和中学教学解方程的方法保持一致。

理解了教材的设计意图,我开始强迫自己扭转老的教学思路。结果学生因为是初次接触,课堂上学习的竟是那样的有滋有味。但在后面的教学中,我渐渐发现采用等式的基本性质解方程给学生带来的竟然是局部的衔接,而存在局部的衔接对学生会更困难。从教材的编排上,整体难度虽然有所下降,却把用等式的性质解方程的方法单一化了。教材有意避开了形如a—x=b a÷x=b等类型的题目,不教学此类方程的求解方法,因为这类题目如果采用等式的性质来解非常麻烦。很显然采用等式的性质这种方法教学小学阶段的解方程目前存在着很大的局限性。

但在教学列方程解决实际问题时,我们又不能避免学生在列方程时,依然出现形如a-x=b和a÷x=b的方程,特别是我们不能刻意地给学生强调不能列出x在后面做减数或做除数的方程,如果这样强调,学生心中会存在很大的疑惑,当学生列出这样的方程时,我们更头痛于学生求解能力的局限性。

鉴于以上原因,课堂上我采用了新老教学思路结合使用的方法,先从教材中的新思路运用等式的基本性质教会孩子解较简单的方程,以便于日后初中学习时顺利接轨,同时对于初中学习“移项”也能顺利接收。但是面对现在四年级孩子的思维及接受能力,我再利用老教材的教学思路“加减、乘除法各部分之间的关系”教给孩子解方程,至少这样能让我的学生会解各种类型的方程,特别是有利于孩子们列方程解决实际问题,他们不会再被“以乘代除”、“以加代减”的思路困扰着列方程,并且列出来还能顺利解这个方程。

我个人以为,这样用新旧方法结合着教学,既能让学生为以后的学习做好衔接,形成绿色的通道,同时又体现解决同一问题方法、思路的多样性。通过学生的课堂作业,我发现教学效果出奇的好。

通过解方程这部分内容的教学,我感到不论你的教龄有多长,你对同一教学内容教学了有几遍,每次教学都需要教师静下心来好好的研究教材教法,这样才能用最适合学生未来发展的方法去教学生。

《解简易方程》教学反思2

学生经历由天平上的具体操作抽象为代数问题的过程,能用等式的性质(天平平衡的道理)列出方程,对于解比较简单的方程,学生并不陌生。

比如:x+4=7学生能够很快说出x=3,但是就方程的书写规范来说,有必要一开始就强化训练,老师规范的板书,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。对于稍复杂的方程要放手让学生去试一试,这样就可以使探究式课堂教学进入一个理想的境界。

不难看出,学生经历了把运算符号+看错成了-,又自行改正的过程,在这一过程中学生体验到了紧张、焦急、期待,成功的感觉,这时的数学学习已进入了学生的内心,并成为学生生命成长的过程,真正落实了《数学课程标准》中在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心的目标,在这个思维过程中,学生获得了情感体验和发现错误又自己解决问题的机会。老师以人为本,充分尊重学生,也体现在耐心的等待,热切的期待的教学行为上,老师的教学行为充满了人文关怀的气息,微笑的脸庞、期待的眼神、鼓励的话语,无时无刻不使学生感到这不仅是数学学习的过程,更是一种生命交往的过程,学生有了很安全的心理空间,不然,他怎么会对老师说老师,我太紧张了,这是学生对老师的信任和自己不安的复杂情绪的表现。反思我们的教学行为,如果在课堂中多一些耐心和期待,就会有更多的爱洒向更多的学生,学生的人生历程中就会多一份信心,多一份勇气,多一份灵气。

《解简易方程》教学反思3

《解方程》是人教课标版小学数学五年级上册第四单元内容,本节课是在学生学习了用字母表示数和方程的基础上进行教学的,新课程的解方程一改以往的由加减乘除各部分之间的关系的引入方法,运用更能让学生明白的天平平衡的原理来引入,《解简易方程》教学反思。解题的基本原理从未改变——等式的基本性质,即:方程的两边同时加上或减去相同的数,除以或乘以同一个不为零的数,方程的两边仍相等。

这节课内容不是新内容,但方法却是新方法,我认为设计教学时应将“方程的解”和“解方程”这两个概念放到例题1的后面引入,能使学生对概念理解更充分,印象更深刻。

教学中我先利用课件演示了天平两端同时加上或减去同样的重量,同时扩大或缩小相同倍数,天平任然保持平衡,目的是让学生直观感受天平保持平衡原理,为学生迁移类推到方程中打基础。然后 ……此处隐藏6796个字……变,必有他的理由,能用吗?

困惑!我先了解改革的原因(摘自教学参考书):新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。从这不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。但是从另一方面看出老教材的方法并无错误,而且能让学生清楚准确地掌握实际解题,面对题目不会盲目,而采用等式基本性质给学生带来的是局部的衔接,而存在局部对学生会更困难,如a-x=b和a÷x=b此类的方程。

《解简易方程》教学反思11

人教版五年级上册《解简易方程》这个单元中,教材是通过等式的基本性质来解方程,这个方法虽然说使得小学的知识与初中的知识更加的接轨,让方程的解法更加的简单。从教材的编排上,整体难度下降,对学生以后的发展是有利的。但是教材中故意避开了减数和除数为未知数的方程,如:a-x=b或a÷x=b,要求学生根据实际问题的数量关系,列成如x+b=a或bx=a的方程。这样的处理方法,有时也会无法避免地直接和方程思想发生矛盾。例如“爸爸比小明大28岁,小明Х岁,爸爸40岁。”很多学生列出了这样的方程:40-Х=28,方程列的是没有任何问题的,但是应该怎么解呢?允不允许学生用四则运算各部分的关系来解方程?是否该向学生讲解方法?还是让学生把此方程改成教材要求的那样的方程?如果要改成教材要求的方程,那就是在向学生传达这样的思想:这样的列法是不被认可的,那么以后在学习“未知数是减数和除数的方程”时,学生的思维不就又和现在冲突了吗?现在学习的节方程中,学生很容易看见加法就减,看见减法就加,看见乘法就除,看见除法就乘,如把30÷Ⅹ=15的解法教给学生,能熟练掌握并运用的学生很少,对大部分学生来说越教越是糊涂,把本来刚建构的解方程方法打破了。如果不安排,那么每次在出现的时故意回避吗?

在教学列方程解加减乘除解决问题第一课时,我是这样处理的。先出示做一做的题目,这题更接近学生的实际,学生也能更好理解数量关系。小明今年身高152厘米,比去年长高了8厘米。小明去年身高多少?先让学生读题理解题目中有哪几个量?引导学生进行概括,去年的身高、今年的身高、相差数。追问:这三个量之间有怎样的相等关系呢?

去年的身高+长高的8cm=今年的身高

今年的身高-去年的身高=长高的8cm

今年的身高-长高的8cm=去年的身高

你能根据这三个数量关系列出方程吗?学生尝试列方程。几乎全班学生都是正确的。

X+8=152 152-x=8 152-8=x

追问学生你对哪个方程有想法?学生一致认为对第三个方程有想法?生1:这个根本没有必要写x,因为直接可以计算了。生2:x不写,就是一个算式,直接可以算了。我肯定到:列算式解决实际问题时,未知数始终作为一个“解决的目标”不参加列式运算,只能用已知数和运算符号组成算式,所以这样的x就没有必要。接着让学生解这两个方程X+8=152 、152-x=8方程。学生发现152-x=8解出来的解是不正确的。告诉学生减数为未知数的方程我们小学阶段不作要求,所以你们就无法解答了。接着,我再引导学生观察这三个数量关系,他们之间有联系吗?其实减法是加法的逆运算,是有加法转变过来。因此,我们在思考数量关系时,只要思考加法的数量关系,这是顺向思维,解题思路更加直截了当,降低了思考的难度。接着只要把未知数以一个字母(如x)为代表和已知数一起参加列式运算x+b=a,体会列方程解决问题的优越性。这就是我们今天学习的一种新的解决问题的方法——列方程解决问题。

接着用同样的教学方法探究bx=a的解决问题。

我这样的教学不知道是否合理?其实小学生在学习加减法、乘除法时,早就对四则运算之间的关系有所感知,并积累了比较丰富的感性经验。要不要运用等式的性质对学生再加以概括呢?

《解简易方程》教学反思12

长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反思。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接,教学反思《解简易方程教学反思》。通教材的老师也主张用等式的基本性质解方程。

在我的教学过程中却出现了这样的问题 ,利用等式的基本性质解形如x+a=b与x-a=b, ax=b与x÷a=b一类的方程,学生方法掌握起来比较简单。但写起来比较繁琐。然而遇到a-x=b、a÷x=b的方程时,由于小学生还没有学习正负数的四则运算,如果利用等式的基本性质解,方程变形的过程及算理解释比较麻烦;但是在教学过程中我们不可避免地会遇到根据现实情境从顺向思考列出X当作减数、当作除数的方程,要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。于是,我又要求学生遇到X当作减数、当作除数的方程时,要求学生会用减法和除法各部分之间的关系来做。但是,我发现这让有些孩子无所适从。我现在感到很困惑,我们到底怎样做才是合理得呢?恳请各位老师指教。

《解简易方程》教学反思13

新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑

1、从教材的编排上,整体难度下降,有意避开了,形如:45-X=23等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现X前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出X在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答X在后面这类方程的解答方法,就是等号二边同时加上X,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、 内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充X前面是除号或减号的方程的解法。要教他们列方程时怎么避免X前面是除号或减号的方程的出现等等。

《《解简易方程》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式