当前位置:首页 > 教学资料 > 教学反思

3的倍数教学反思

时间:2024-06-08 23:48:42
3的倍数教学反思

3的倍数教学反思

身为一名刚到岗的人民教师,我们都希望有一流的课堂教学能力,写教学反思能总结我们的教学经验,那么你有了解过教学反思吗?下面是小编整理的3的倍数教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

3的倍数教学反思1

在教学3的倍数的时候,先复习2的倍数和5的倍数的特征,然后出示1——100的数,让学生找出3的倍数,然后让学生观察这些数有什么特征。出现的情况有:1.3的倍数跟个位有关;2.这些3的倍数都相差3;3.这些3的倍数排列时是斜着的,几乎没有人考虑到各个数位和。

看到这三个出现的情况,我有些发晕。分析可能有这样原因,一是学生受2和5的倍数的特征的影响,因为2和5的倍数的特征都只考虑个位,所以3的倍数也就考虑个位了;二是学生受1——100这些数排列的影响,只看整体排列的规律和所在位置的特征或者这一列数的特征,没有考虑个体数的特征。

只有张靖晨说了12就看1+2=3,3是3的倍数,所以12就是3的倍数,她的回答就像救命稻草,我抓住她的话让同学去验证她说的是不是适合每个3的倍数,验证的结果证实了张靖晨的想法是对的。这是特征是在两位数范围内验证的那么三位数以外的数3的倍数是不是也有这样的特征,继续找几个数验证一下,结果适用于所有的数。这样3的倍数的特征就自然总结出来了。其实如果张靖晨不说这规律,我也是要提示学生往这方面想的。学生不会或者想不到的时候,老师适当的给与指导和提示,为学生的学习和研究指引一条正确的路是必须的。年月日教学反思因数和倍数教学反思

3的倍数教学反思2

《3的倍数特征》进行了两次教学授课,第一次是新授,第二次是录课重复授课。下面就本节课前后两次上课进行如下反思:第一次上课,采用游戏的方式引入,提前给学生编号,根据编号做游戏。由于每个学生的编号不一样,所以在做游戏的时候,每个学生集中注意力,倾听游戏要求,激发了学生的学习兴趣。设置游戏的目的是复习2或5倍数的特征,同时,对3的倍数特征的学习产生求知欲。接下来是采用提出猜想,举出个例否定猜想来过渡。让学生充分地认识到依据2或5的倍数特征的思想已经行不通了,从而开始新的探索。在探索过程中借助“百数表”,让学生独立地圈出3的倍数,圈完后互相交流3的倍数的个位有什么特点,再次否定了之前的思维定式。由于个位上没有特点,所以引导学生从其他的角度观察,学生能想到横着观察、竖着观察,但对于斜着观察不能很好的发现,所以本节课中我关注到学生的思考困境,引导学生从斜着观察的角度思考探索。当学生斜着观察时能发现个位上的数字依次减1,十位上的数字依次加1,适时提出“什么是没有变的?”问题一提出,学生恍然大悟,发现:个位和十位上的数的和没有变!顺其自然的知道了3的倍数具有这样规律。经过研究每一斜行发现:个位和十位上的数的和不变,都是3的倍数。知道了这个规律后,下面开始延伸这个规律。一方面:验证百数表内其他不是3的倍数是否具有这个规律?另一方面:比100大的数,三位数、四位数、五位数等是否具有这个规律?通过两方面的验证,再次强调了这个规律是普遍存在的,而这时3的倍数特征已经归结为:一个数各位上的数的和是3的倍数,这个数就是3的倍数。知道了3的倍数特征之后通过练习巩固加强,练习的设计是三道题,这三道题设计为不同的层次,第一题是基础题,第二题是拔高题,第三题是解决问题。通过做题发现学生本节课掌握得不错。最后,对本节课的知识进行了延伸,通过出示课本第13页“你知道吗?”,让学生明白为什么2或5的倍数特征只看个位就可以了,而3的倍数特征需要看所有数位。从而达到学知识不但要知其然还要知其所以然。整个教学过程中,学生能在猜想、操作、验证、交流、归纳的数学活动中获得丰富的数学经验,同时这也有利于学生创造力的培养。通过本节课的教学以及学生的掌握情况,最终检测本节课的目标较好的达成。但反思这节课的不足,我觉得在每个环节上的过渡应该更加的自然。另外,在小组讨论的时候应多关注学生的交流,对学生进行适时地指导。基于第一节课的优点和不足,进行了第二次的授课即录课。由于学生们已经学习了过本节课,所以对于学生们来说已经是旧知识。要把旧知识重新来讲,如果照搬之前的授课方式已经远远不够了。如何更改,这给我提出来一个新的问题。为此,这节课我做了适当的调整。本节课我更多关注的是数学方法和思维方式的培养。其中体现在:

1、学生在举例验证猜想的时候,让学生体会反例的作用,如果有一个反例的存在,就说明猜想的结论是错误的。

2、在探索3的倍数特征时,对于100以内3的倍数,应如何着手验证,怎么选取数来验证,这一环节让学生体会:在研究规律的时候,优先选择数比较多的这一组,让学生明白如果有规律更容易探索和发现。

3、在拓展规律的时候,采用举了大量的数据,证明了规律的普遍存在,让学生体会规律的适用范围。

4、在做练习的时候,第2小题,关注学生思考问题是否全面,关注学生的思考过程。

5、练习的第3小题,一道解决问题的题目,通过让学生读题、审题、分析题之后,再思考。这一道题学生展示了多种的做题方法,体现了方法的多样性,同时也说明学生的思维是活跃的。本节课中的不足,练习中第3题学生的做法没有完全的在黑板上板书,另外,本节课中学生会超前说出所有问题的答案,使得教师略显失措,我觉得这是因为我备学生还不够。在今后的教学中,我会改进自己的不足。我将更深入地研究教材、钻研教法,不断提高自己的教学水平,设计出学生更能接受和喜欢的课。

3的倍数教学反思3

《3的倍数的特征》是五年级下册数学第二单元“因数与倍数”中的一个知识点,是在学生已经认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。

因而在《3的倍数的特征》的开始,我先复习了2、5的倍数的特征,然后学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2.5的倍数的特征”迁移到“3的倍数特征的问题中,得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。在问题情境中让学生产生认知冲突产生疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把3的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征。接下来,经过进一步提示,引导学生观察各位上数的和,发现各位上的和是3的倍数。于是,形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。

为了验证这一猜想,我 ……此处隐藏7233个字……孩子们的求知与求学的欲望激发起来”。我们既然处在一个大的竞争环境中,不妨也在我们的小课堂中设置一个竞争的情境,教师在课堂上引入竞争机制,教学中做到“低起点,突重点,散难点,重过程,慢半拍,多鼓励。”为学生创造展示自我,表现自我的机会,促进所有学生比、学、赶、超。例如,在一次数学教研活动中,一位教师就根据教学内容并针对小学生心理特点设计了这样一种情境。讲授“8的认识”,在做课堂练习时,教师拿出两组0至8的数字卡片,指定一名男生和一名女生各代表男队,女队进行比赛。虽然此刻教师还没宣布比赛的规则和要求,可是全体同学已进入了教师所设置的情境之中,暗中为自己的队加油,全体学生的学习兴趣一下子被引发出来了。

三、创设游戏性情境,提高学习兴趣

根据数学学科特点和小学生好动、好新、好奇、好胜的思维特点,设置游戏性情境,把新知识寓于游戏活动之中,通过游戏使学生产生对新知识的求知欲望,让学生的注意力处于高度集中状态,在游戏中得到知识,发展能力,提高学习兴趣。例如,在课堂训练时,组织60秒抢答游戏。教师准备若干组数学口答题,把全班学生分为几组,每组选3名学生作代表。然后由教师提出问题,让每组参赛的学生抢答,以积分多为优胜,或每答对一题奖励一面小红旗,多得为优胜。学生在游戏中大脑处于高度兴奋状态,精神高度集中,在不知不觉中学到不少有用的知识,并受到正确的数学思想方法的熏陶,有力地提高了学生的学习兴趣。

四、创设故事性情境,唤起学习兴趣

教学的艺术不在于传授本领而在于激励、唤醒和鼓舞“。我们认为这正是教学的本质所在。我们在数学教学中适当地给学生营造一个故事情境,不仅可以吸引学生的注意力,并会使学生在不知不觉中获得知识。例如,在教学”比的应用“一节内容时,在练习当中我为同学们讲了一个故事:中秋节,江西巡抚派人向乾隆皇帝送来贡品——芋头,共3筐,每筐都装大小均匀的芋头180个,乾隆皇帝很高兴,决定把其中的一筐赏赐给文武大臣和后宫主管,并要求按人均分配。军机大臣和珅了马上讨好,忙出班跪倒”启奏陛下,臣认为此一筐芋头共180个,先分别赐予文武大臣90个,后宫主管90个,然后再自行分配“。还没等和珅说完宰相刘墉出班跪倒”启奏万岁,刚才和大人所说不妥。这在朝的文官武将现有56位,分90个芋头,每人不足两个,而后宫主管34人,分90个芋头,每人不足三个,这怎么能符合皇上的人均数一样多“。皇上听后点点头”刘爱卿说的有理,那依卿之见如何分好?“此时,学生都被故事内容所吸引,然后让学生替刘墉说出方法,这个故事把数学知识寓于故事情节之中,从而唤起学生学习兴趣。

五、创设操作性情境,调动学习兴趣

根据小学生好动、好奇的心理特点,在小学数学课堂教学中,教师可以组织一些以学生活动为主,对一些实际问题通过自己动手测量、演示或操作,使学生通过动手动脑获得学习成效,既能巩固和灵活运用所学知识,又能提高操作能力,培养创造精神。

例如,在讲”轴对称图形“内容时,教师提前让学生准备长方形、正方形、圆、平行四边形和几种三角形的纸片。让学生试做每个图形的对折,使图形对折后能完全重合。学生通过操作后发现有些图形能完全重合有些图形不能完全重合。学生通过亲自动手操作,自己发现问题、解决问题,而且有力地调动了学生的学习兴趣。

通过多种形式的教学情境设计,不但使学生对学习数学产生乐趣,而且有助于培养学生勇于探索,大胆创新的精神。

3的倍数教学反思14

《3的倍数的特征》是学生在学习过2和5倍数特征之后的又一内容,因为2和5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。我决定在这节课中突出学生的自主探索,使学生猜想——观察——再观察——动手试验的过程中,概括归纳出3的倍数特征。

上课过程中,大部分学生能按照我的思路去学习,使整个教学环节顺利进行下去。然而这节课结束后,我感觉以下方面做得尚有欠缺,现总结如下:

1、百数表使用不恰当。在推导3的倍数特征过程中,我将百数表的使用价值放在推翻同学们之前猜测的三的倍数是个位上的数是3、6或9,以及其他猜想上,其实百数表完全可以体现三的倍数的特征,我应该在今后的教学中多加思考,反复推敲,争取吃透教材,使学生们在学习新知识时候能够从最浅显的知识中入手,找到学习的方法,体会学习的乐趣;在观察百数表到后面总结3的倍数特征时,都应放手让孩子们多说,说透,这样更有助于锻炼孩子的概括归纳能力。老师不要着急,学生能说出的尽量让学生说,多放手,相信学生。

2、教具准备不充分。在课堂教学中可以给学生分发百数表,人手一张表,将做错的同学的表格通过投影仪展示给大家,让同学们去纠错,在纠正错误的过程中,加深对知识的记忆。

课堂不是同步,学生的发展始终是教学的落脚点。我们的教学应着眼于学生对解决问题方法的感悟,这样才可获得最佳的效果。

3的倍数教学反思15

《3的倍数的特征》的教学是五下数学第二单元“因数与倍数”中一个知识点,是在学生已认识倍数和因数、2和5倍数的特征的基础上进行教学的。由于2、5的倍数的特征从数的表面的特点就可以很容易看出——根据个位数的特点就可以判断出来。但是3的倍数的特征却不能只从个位上的数来判断,必须把其他各位上的数相加,看所得的和是否为3的倍数来判断,学生理解起来有一定的困难。因而在《3的倍数的特征》的开始阶段我复习了2、5的倍数的特征之后就让学生猜一猜什么样的数是3的倍数,学生自然而然地会将“2。5的倍数的特征”迁移到“3的倍数特征的问题中, 得出:个位上是3、6、9的数是3的倍数,后被学生补充到“个位上是0—9的任何一个数字都有可能是3的倍数,”其特征不明显,也就是说3的倍数和一个数的个位数没有关系,因此要从另外的角度来观察和思考。

在问题情境中让学生产生认知冲突,萌发疑问,激发强烈的探究欲望。接着提供给每位学生一张百数表,让他们圈出所有3的倍数,抛出问题:把 3 的倍数的各位上的数相加,看看你有什么发现,引导学生换角度思考3的倍数特征 。学生在经历了猜测、分析、判断、验证、概括、等一系列的数学活动后感悟和理解了3的倍数的特征,引导学生真正发现:3的倍数各位上数的和一定是3的倍数;不是3的倍数各位上数的和一定不是3的倍数。从而,使学生明确3的倍数的特征,然后进行练习与拓展。这样的探究学习比我们老师直接教给他们答案要扎实许多,之后的知识应用学生就相应比较灵活和自如,效果较好。

这节课结束后,我感觉最大的缺憾之处在最后的拓展练习上,由于自己事先练习下水没有做足,所以误导了学生。题目如下:“从3、0、4、5这四个数中,选出两个数字组成一个两位数,分别满足以下条件:1、是3的倍数。2、同时是2和3的倍数。3、同时是3和5的倍数。4、同时是2、3和5的倍数。”学生问要写几个时,我回答如果数量很多至少写3个。呵呵,其实此题不需要如此考虑,因为它们的数量都有限。

希望以后自己的教学会更扎实起来。

《3的倍数教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式